
REST Driven Data Processing in the Atmospheric Composition Processing System
Marty Brandon1 <mbrandon@sesda2.com>, Brian Duggan 1 <brian.duggan@nasa.gov>, Phil Durbin1 <phillip.durbin@nasa.gov>, Andrew Laughland4 <alaughland@sesda2.com>,

Arnold Martin3 <amartin@innovim.com>, Val Soika1 <vsoika@sesda2.com>, Curt Tilmes2 <curt.tilmes@nasa.gov>, Michael Walters1 <michael.a.walters@nasa.gov>
1:ADNET Systems, Inc. 2:NASA/GSFC, 3: INNOVIM, Inc., 4: Wyle, Inc

A play in two acts

Prologue
The Hypertext Transfer Protocol (HTTP) provides a rich vocabulary for manipulating and sharing
resources between computing nodes. Representational State Transfer (REST) is an architectural
style that uses HTTP as its basis. The Atmospheric Composition Processing System uses a REST
architecture in order to process and generate data collected from the Ozone Monitoring Instru-
ment on the Aura spacecraft and the Ozone Mapping and Profiler Suite (OMPS) on the NPP
spacecraft. This choice of architecture allows the system to use many existing tools and con-
cepts for data processing that are already employed as part of the World Wide Web, and to be
forward-compatible with evolving HTTP-based standards for provenance representation, granule
searching, and data distribution.

Cast of Characters
Restmd : Stores metadata for files and other permanent artifacts.
Restapp : Stores metadata for applications, complementing a version control system.
Sched : Stores ephemeral artifacts representing the current plans, tasks, jobs.
SimpleAuth : Performs authentication and authorization for other servers.
Minions : Run the jobs, return the results.
Yars : The archive, stores all data.

Act I
in which a granule is produced

enter Scientist and Sched
Scientist : Sched, compute the Total Ozone for OMI orbit 99! POST /plan
Sched : As you wish. 200 OK
Scientist : Is it running? GET /plan/1234
Sched : Not yet. [”State” : ”Planned”]
Scientist : What else is running? GET /plan/search
Sched : a lot of things [..list of plans..]
enter 50 Minions
Minion 23 : Sched, what can I do to help? GET /job
Sched : Here, run this job. [”OMTO3” : ”1.1”, ”Orbit” : ”99”]
Minion 23 runs the job, and it finishes.
enter Restmd and Yars
Minion 23 : Restmd, take these artifacts. POST /appevent
Restmd : Thanks. 200 OK
Minion 23 : Yars, take this data. PUT /file
Yars : Thanks. 200 OK
Minion 23 : Sched, I’m done. POST /job/status
Sched : Great. 200 OK
Scientist : Is it done? GET /plan/1234
Sched : Yes. [”State” : ”Complete”]
Scientist : Then, where is the data?
curtain falls

Act II
in which a granule is downloaded

enter Scientist and Restmd
Scientist : Where is OMTO3 orbit 99? POST /file/search
Restmd : It is in the archive at this URL. [”Location” : ”/abc”]
Scientist : And in what environment was it generated? POST /appevent/search
Restmd : Ask the archive [”Location” : ”/abcevent”]
Scientist : Archive? GET /status
enter Yars
Yars : I’m here. 200 OK
Scientist : Give me the data. GET /abc
Yars : Here it is. [data]
Scientist : and the execution environment. GET /abcevent
Yars : Here it is. [more data]
curtain falls

Behind the Scenes
Servers and client use a common framework which provides consistent techniques for logging, API instrospection, authentication and authorization, status reporting, and dependency resolution.
A web user interface makes use of the clients, and provides a proxy directly to the backend, so that external clients can connect to the services.

Minions : Processing nodes

• The minions use the same server APIs as an external client.

• Minions initiate HTTP transactions, but do not listen for any.

• There is no centralized minion management, just a registry in Sched based on incoming
connections.

• External hosts can become minions, as can virtual hosts (e.g. in a cloud).

• Minions get jobs from Sched and applications from Restapp. They store granules and
artifacts in Yars, and metadata in Restmd.

• Minions are responsible for sending details of the execution environment, inputs, outputs,
and other provenance-related artifacts.

• Minions may also initiate websocket connections with MinionRelay to allow jobs to be
monitored.

• Minions use Data::Downloader to maintain a fixed-size LRU cache of applications and
data.

• Data::Downloader can subscribe to RSS feeds and use Discovery Service APIs to retrieve
data from other sources.

Restmd : File/granule metadata.
$ restmdclient api

- GET /appevent
- GET /archiveset
- GET /esdt
- GET /file/(*key)
- GET /file/identify/(.filename)
- GET /file/secondary/:id/:tag
- GET /file_metadata/(*key)
- GET /files/count/archiveset/:min_ingest/:max_ingest
- POST /esdt
- POST /file_metadata
...

• Restmd provides RSS and Atom feeds
compatible with Discovery standards.

• Production Rules use Restmd to
find inputs when generating gran-
ules.

Restapp : App metadata.
$ restappclient api

- GET /app
- GET /app/(*key)
- GET /app/(.name)/(.version)
- GET /app_dynamic_file/(*key)
- GET /app_person/(*key)
- GET /app_runtime_parameters/search
- GET /persons/search
- POST /app/(*key)
- POST /app_static_input_files/search
- POST /persons/search
...

• Used in conjunction with a version
control system for delivery of apps.

Sched : Schedules apps to run.
$ schedclient api

- GET /job
- GET /plan
- GET /task
- POST /cancel_jobs
- POST /expire_stalled_jobs
- POST /granularities/search
- POST /rerun_tasks
- POST /retry_tasks
- POST /state_change
- POST /tasks/search
...

• Tracks the states of jobs, plans and
tasks to be run on the minions.

MinionRelay : Real time minion monitoring.
$ minionrelay api

- GET /status
- GET /api
- GET /version
- GET /min
- GET /min/:which
- GET /mins
- GET /tellmin/:which/(.*what)
- GET /log/:lines

• Maintains websocket connections,
allowing Sched to monitor progress
and start/stop jobs instantly.

SimpleAuth : Check authentication and authorization
$ simpleauth api

- GET /status
- GET /api
- GET /version
- GET /auth
- GET /authz/resources/(.user)/(.action)/(*resourceregex)
- GET /authz/user/(.user)/(.action)/(*resource)
- GET /log/:lines

• Interfaces with EOS Authentication
LDAP service.

Dataflow : Visualize and query the graph of dependencies.
$ acpsdataflowclient api

- GET /:noun
- GET /:noun/:instance
- GET /:noun/:instance/:action
- GET /app/:app/cm
- GET /app/:app/info
- GET /archive_set/:archive_set/graph
- GET /archive_set/:archive_set/graph/:output
- GET /archive_set/:archive_set/graph/printable/print
- GET /archive_set/:instance/rules
- GET /esdt/:esdt/info
- GET /esdt/:esdt/stats

• Deduces all ascendants and descen-
dants of a given product, at the dataset
level.

Yars : Archive of granules and artifacts.
$ yarsclient api

- PUT /file/(.filename)/:md5
- GET /bucket_map
- GET /disk/usage
- GET /file/(.filename)/:md5
- GET /file/:md5/(.filename)
- GET /log/:lines
- GET /servers/status
- POST /check/manifest
- POST /disk/status
- DELETE /file/(.filename)/:md5
- DELETE /file/:md5/(.filename)

• Uses a distributed hash table for
storage. Because there is no cen-
tral server, new hosts and disks may
be added just by updating the hash
table.

Plot Overview
• The ACPS is a distributed architecture. There is no central control; servers all act independently.

• Communication is all done using REST calls. The message payload for the calls is encoded in JSON, but other encodings may be requested (e.g. XML, YAML) via HTTP Accept Headers.

• MD5 digests for data are used during storage, transfer, and downloading, to guarantee data integrity.

• The internal interfaces between the servers are the same as the external APIs.

• The environment is captured during execution of applications. This provenance data can then be used later to reproduce results.

